Participatory Budgeting with Cumulative Votes

Model

- projects: $P = \{p_1, \dots, p_m\}$
- voters: $V = \{v_1, \dots, v_n\}; v: P \rightarrow \mathbb{R}; v_j(p) \ge 0; \sum_{p \in P} v_j(p) = 1$
- costs: c: $P \rightarrow \mathbb{N}$
- budget limit: L: \mathbb{N}
- budgeting scenario: (P, V, c, L)

Greedy algorithms

- Greedy-by-Support (GS): $f_{GS}(p) = \sum_{j \in [n]} v_j(p)$.
- Greedy-by-Support-over-Cost (GSC): $f_{GSC}(p) = (1 / c(p)) \sum_{j \in [n]} (v_j(p) \cdot L/n).$
- Greedy-by-Excess (GE): $f_{GSC}(p) = \sum_{j \in [n]} (v_j(p) \cdot L/n) c(p)$.

Cumulative Single Transferable Vote (CSTV)

- Project-To-Fund Selection Procedure
- Excess Redistribution Procedure
- No-Eligible-Project Procedure
- Inclusive Maximality Postprocedure

Project-To-Fund Selection Procedure

Pick project to fund with greedy procedure

Excess Redistribution Procedure

- who needs votes to be transferred: tran(p) = $\{v_j | v_j(p) > 0 \text{ and } \exists p' \in /S : v_j(p') > 0\}$.

- Transfer how much to transfer

$$\frac{\gamma L}{n} \sum_{v_j \in \operatorname{tran}(p)} v_j(p) + \frac{L}{n} \sum_{v_j \notin \operatorname{tran}(p)} v_j(p) = c(p) .$$

- Transfer $(1 - \gamma) \cdot v_j$ (p) votes

No-Eligible-Project Procedure

- Elimination-with-Transfers (EwT)
- Minimal-Transfers (MT)

$$\frac{L}{n} \cdot \sum_{j: v_j(p) > 0} \sum_{\ell=1}^m v_j(p_\ell) \ge c(p)$$

$$r = \operatorname{support}(p)/c(p)$$
$$v_j(p) := \min(\sum_{\ell=1}^m v_j(p_\ell), \frac{v_j(p)}{r})$$

Inclusive Maximality Postprocedure

- Reverse Eliminations (RE)
- Acceptance of Undersupported Projects (AUP).

Selection of Variants

- EwT (i.e., GE + EwT + RE)
- EwTC (i.e., GSC + EwT + RE)
- MT (i.e., GE + MT + AUP)
- MTC (i.e., GSC + MT + AUP)

Axiomatic Properties

- Monotonicity Axioms
 - Splitting monotonicity
 - Merging monotonicity
 - Support monotonicity
- Proportional Representation
 - Weak Proportional Representation
 - Proportional Representation
 - Strong Proportional Representation

	GS	EwT	MT	GSC	EwTC	MTC
Splitting monotonicity	x	~	~	~	x	x
Merging monotonicity	~	x	x	x	x	x
Support monotonicity	x	x	x	x	x	x
Weak-PR	x	~	~	~	~	~
PR	x	~	~	x	~	~
Strong-PR	x	X	~	X	x	~

		GS	EwT	MT	GSC	EwTC	MTC
	Splitting monotonicity	X	~	~	\checkmark	X	x
	Merging monotonicity	\checkmark	X	X	X	X	x
	Support monotonicity	x	x	x	X	X	x
	Weak-PR	x	~	1	~	1	~
notonicity	PR	X	~	~	x	~	~
DNICILY	Strong-PR	X	x	~	x	x	~

Definition 1 (Splitting monotonicity). An aggregation method \mathcal{R} satisfies splitting monotonicity if for each budgeting scenario E = (P, V, c, L), for each funded project $p \in \mathcal{R}(E)$, and for each budgeting scenario E' which is formed by splitting project p into a set of projects P' with the same cost c(p) = c(P'), and such that for each voter v_i we have $v_i(P') = v_i(p)$, it holds that $\mathcal{R}(E') \cap P' \neq \emptyset$.

	GS	EwT	MT	GSC	EwTC	MTC
Splitting monotonicity	X	\checkmark	1	\checkmark	X	X
Merging monotonicity	~	X	X	X	X	x
Support monotonicity	X	x	x	X	X	X
Weak-PR	x	~	~	~	~	~
PR	X	~	~	x	\checkmark	~
Strong-PR	X	x	1	x	x	~

Merging monotonicity

Definition 2 (Merging monotonicity). An aggregation method \mathcal{R} satisfies merging monotonicity if for each budgeting scenario E = (P, V, c, L), each $B' \subseteq \mathcal{R}(E)$, and for each scenario $E' = (P \setminus B' \cup \{b'\}, V, c', L)$ such that b' is a new project which costs c(B') and such that for each voter v_i we have that $v_i(b') = \sum_{b \in B'} v_i(b)$, it holds that $b' \in \mathcal{R}(E')$.

	GS	EwT	MT	GSC	EwTC	MTC
Splitting monotonicity	X	\checkmark	1	\checkmark	X	X
Merging monotonicity	\checkmark	X	X	X	x	x
Support monotonicity	X	x	x	X	X	x
Weak-PR	x	\checkmark	1	1	~	~
PR	X	~	~	x	~	~
Strong-PR	x	x	~	X	x	~

Support monotonicity

Definition 3 (Support monotonicity). An aggregation method \mathcal{R} satisfies support monotonicity if for each budgeting scenario E = (P, V, c, L), each project $p \in \mathcal{R}(E)$, and each budgeting scenario E' = (P, V', c, L) such that $|V \triangle V'| = 1$ and for the single voter $v \in V \triangle V'$ and the single voter $v' \in V' \triangle V$ it holds that (1) v'(p) > v(p) and (2) for each $p' \neq p$, $v'(p') \leq v(p')$, then $p \in \mathcal{R}(E')$.

	GS	EwT	MT	GSC	EwTC	MTC
Splitting monotonicity	х	~	~	~	X	х
Merging monotonicity	\checkmark	X	X	X	х	X
Support monotonicity	х	х	X	X	X	x
Weak-PR	x	~	~	~	~	~
PR	X	~	\checkmark	x	~	~
Strong-PR	X	x	~	x	x	~

Weak Proportional Representation

Definition 4 (Weak Proportional Representation). An aggregation method \mathcal{R} satisfies Weak Proportional Representation (Weak-PR) if for each budgeting scenario E = (P, V, c, L), for each $\ell \in [L]$, each set $V' \subseteq V$ of voters with $|V'| \ge \ell n/L$, and each set $P' \subseteq P$ of projects with $c(P') \le \ell$, there exist a scenario E' which differs from E only in the votes of the voters from V', such that $P' \subseteq \mathcal{R}(E')$.

	GS	EwT	MT	GSC	EwTC	MTC
Splitting monotonicity	х	\checkmark	1	\checkmark	X	X
Merging monotonicity	~	X	X	X	х	X
Support monotonicity	Х	x	x	X	X	X
Weak-PR	x	~	1	~	~	~
PR	X	~	~	x	\checkmark	~
Strong-PR	X	x	~	X	x	~

Proportional Representation

Definition 5 (Proportional Representation). An aggregation method \mathcal{R} satisfies Proportional Representation (PR) if for each budgeting scenario E = (V, P, c, L), each $\ell \in [L]$, each $V' \subseteq V$ with $|V'| \ge \ell n/L$, and each set $P' \subseteq P$ of projects with $c(P') \le \ell$, it holds that: If all voters $v' \in V'$ support all projects in P', and no other projects, then $P' \subseteq \mathcal{R}(E)$.

		GS	EwT	MT	GSC	EwTC	MTC
	Splitting monotonicity	Х	~	~	\checkmark	X	x
	Merging monotonicity	\checkmark	X	X	X	х	x
	Support monotonicity	х	х	x	X	X	x
	Weak-PR	х	~	~	~	~	~
Strong Dronartianal Donrocontation	PR	X	~	~	x	~	\checkmark
Strong Proportional Representation	Strong-PR	X	x	~	X	X	~

Definition 6 (Strong Proportional Representation). An aggregation method \mathcal{R} satisfies Strong Proportional Representation (Strong-PR) if for each scenario E = (P, V, c, L), each $\ell \in [L]$, each $V' \subseteq V$ with $|V'| \ge \ell n/L$, and each $P' \subseteq P$, it holds that: If all voters $v' \in V'$ support all projects in P', and not any other project, then either $P' \subseteq \mathcal{R}(E)$ or for each $p \in P' \setminus \mathcal{R}(E)$ we have that $c(p) + c(P' \cap \mathcal{R}(E)) > \ell$.

Experimental Evaluation

- **Voter Satisfaction (VS):** fraction of support of a voter which went on funded projects (formally, for a winning bundle *B*, the voter satisfaction of voter *v* is $\sum_{p \in B} v(p)$).
- Anger Ratio (AR): the fraction of voters who are ignored in the election (formally, $|\{v : \sum_{p \in B} v(p) = 0\}|/|V|$).
- Voter Satisfaction with Approval Votes (*VS): instead of using Equation (1), for each $v_j \in V$ and $p \in S_j$ we set $v_j(p) = 0.1$. This corresponds to using approval ballots (a voter supports each of her supported projects equally).

Simulations

(a) Simulation Scenario 1

(b) Simulation Scenario 2

Rule	VS	*VS	suburbs	AR	AC	Rule	VS	*VS	FoEP	AR	AC
target	100%	100%	40%	0.0	- 1	target	100%	100%	50%	0.0%	0
GS	23.0 %	20.0%	10.9 %	25.4%	45k	GS	21.2 %	18.9%	65%	27.1%	45 k
EwT	25.0 %	23.9%	21.6 %	2.1%	25 k	EwT	24.4 %	23.1%	32%	12.1%	26 k
MT	22.6 %	22.2%	31.8 %	3.5%	24 k	MT	22.8 %	22.5%	22%	19.7%	25 k
GSC	27.6 %	25.4%	15.2 %	11.0%	29 k	GSC	27.9 %	26.3%	7%	39.0%	25 k
EwTC	25.9 %	24.1%	16.7 %	2.8%	27 k	EwTC	24.5 %	22.7%	41%	8.9%	29 k
MTC	25.7 %	23.8%	22.9 %	2.9%	28 k	MTC	24.3 %	22.9%	40%	11.2%	29 k

(c) Warsaw Instance

Rule	VS	AR	AC
WM	66%	5.1%	860 k
GS	67%	4.6%	804 k
EwT	80%	2.6%	295 k
MT	80%	2.5%	294 k
GSC	81%	2.7%	324 k
EwTC	81%	2.8%	319 k
MTC	81%	2.7%	319 k

Based on:

Participatory Budgeting with Cumulative Votes by

- Piotr Skowron University of Warsaw
- Arkadii Slinko University of Auckland
- Stanisaw Szufa Jagiellonian University
- Nimrod Talmon Ben-Gurion University