## Guide to Numerical Experiments on Elections in Computational Social Choice

Piotr Faliszewski AGH University Kraków, Poland


## Niclas Boehmer

 Harvard Univ.

Grzegorz Lisowski AGH University Poland


Stanisław Szufa AGH University Poland

Grzegorz Pierczyński AGH University Poland


Dariusz Stolick Jagiellonian Un Kraków, Poland


## An Election

$$
\begin{aligned}
& v_{3}: ~ R\|>\|_{1}>Q^{-} \\
& v_{4}:\left\langle()_{1}\right)>R_{0} \\
& E=(C, V) \\
& C=\{\mathbb{N}, G, G\} \\
& \mathrm{V}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right)
\end{aligned}
$$

## An Election

Also an election

$$
\begin{aligned}
& v_{1}:\left\{\begin{array}{l}
\text { 为, }
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& v_{4}:\left\{()_{1}, R R_{0}\right\}
\end{aligned}
$$

We mostly focus on the ordinal setting

## Winner Determination

## An Election

Result Modification/Analysis

Normative Properties


## An Election

$$
\begin{aligned}
& v_{2}: Q><\vec{Q}
\end{aligned}
$$

## Largely studied

## theoretically

Why not do experiments?

## Benefits of Experiments

- More complex settings
- More precise results
- Exact running time vs asymptotic running time
- Observe actual phenomena instead of merely predicting their possibility
- Condorcet winners often exist
- No-show paradox is/is-not a problem
- Voting rules do/do-not give very different results


## Problems with Experiments

- They don't generalize
- May be misleading




## Guide to Experiments

A city guide: How were experiment ran so far?

A „how to" guide suggesting how experiments should be done

Idea: Collect as many COMSOC papers about elections as possible, see what they do, draw conclusions!

## Collecting the Data

## Papers

- AAAI, AAMAS, IJCAI
- 2010-2023
- Downloaded all the papers using the XML file from DBLP (September 2023)

Screening Process

- Automated script looking for electionand experiment-related keywords
- election, vote, ballot
- experiment, empirical, simulation
- Manual check of the shortlist
- E.g., IJCAI-23:
- 846 papers
- Script shortlisted 41
- Manual check retained 7


## Collecting the Data

## Easy false positives:

- A passing remark about voting in an unrelated paper
- Election as part of selection
- NLP papers studying political debates (e.g., twitter messages from US presidential campaigns)
- Majority voting in ensemble learning
- Voting used to aggregate some data (but not useful to us)

Screening Process

- Automated script looking for electionand experiment-related keywords
- election, vote, ballot
- experiment, empirical, simulation
- Manual check of the shortlist
- E.g., IJCAI-23:
- 846 papers
- Script shortlisted 41
- Manual check retained 7


## Collecting the Data

## Less easy false positives:

- Papers focussing on 2 candidates only (a lot of liquid democracy works, many works about electing parliaments)
- Papers not discussing experiments, but simply suggesting that someone else should.
- Papers about topics related to voting, but not similar enough to make it to the final database


## Screening Process

- Automated script looking for electionand experiment-related keywords
- election, vote, ballot
- experiment, empirical, simulation
- Manual check of the shortlist
- E.g., IJCAI-23:
- 846 papers
- Script shortlisted 41
- Manual check retained 7


## Collecting the Data: Experiments

- Each paper may contain several experiments
- The notion of an experiment is not well-defined and paper-specific
- For our purposes, a single experiment regards identically generated data of given sizes

Two experiments in a paper, one in the Guide:

- The paper first studies running time of an algorithm on IC elections, for 10 candidates and 10 to 100 voters.
- Then it looks for the probability of a Condorcet winner in such data
- In the Guide this is a single experiments because it uses the same data.


## Collecting the Data: Experiments

- Each paper may contain several experiments
- The notion of an experiment is not well-defined and paper-specific
- For our purposes, a single experiment regards identically generated data of given sizes

One experiment in a paper, one in the guide:

- The paper studies the running time of an algorithm on IC elections, for 10 candidates and 10 to 100 voters, and for 10 to 100 candidates and 50 voters.
- The Guide would contain a single experiment, whose size would be described as:

$$
\{10\} \times[10,100],[10,100] \times\{50\}
$$

## Collecting the Data: Experiments

- Each paper may contain several experiments
- The notion of an experiment is not well-defined and paper-specific
- For our purposes, a single experiment regards identically generated data of given sizes

One experiment in a paper, two in the guide:

- The paper studies the running time of an algorithm on IC elections, for 10 candidates and 10 to 1000 voters, and then for 20 candidates and 10 do 100 voters on Mallows elections
- The Guide would contain two experiments


## Basic Statistics

- Papers: 160
- 130 ordinal
- 35 approval
- Puzzle?
- Experiments: 250
- 211 ordinal
- 46 approval
- Authors: 273 (+/-)
P. Faliszewski --> 26 paper(s) (18 ordinal, 8 approval)
P. Skowron --> 14 paper(s) (8 ordinal, 6 approval)
N. Talmon --> 14 paper(s) (11 ordinal, 3 approval)
M. Lackner --> 12 paper(s) (3 ordinal, 9 approval)
S. Szufa --> 11 paper(s) (8 ordinal, 3 approval)
A. Procaccia --> 8 paper(s) (ordinal)
A. Slinko --> 8 paper(s) (7 ordinal, 1 approval)
N. Boehmer --> 7 paper(s) (ordinal)
N. Mattei --> 7 paper(s) (5 ordinal, 2 approval)
N. Shah --> 7 paper(s) ( 6 ordinal, 1 approval)
L. Xia --> 7 paper(s) (ordinal)
C. Boutilier $\quad->6$ paper(s) (ordinal)
U. Endriss --> 6 paper(s) (4 ordinal, 2 approval)
J. Lang $\quad-->6$ paper(s) (3 ordinal, 3 approval)
O. Lev $\quad-->6$ paper(s) (ordinal)
D. Peters --> 6 paper(s) (4 ordinal, 2 approval)
T. Walsh $\quad-->6$ paper(s) (ordinal)
R. Bredereck --> 5 paper(s) (4 ordinal, 1 approval)
M. Brill $\quad->5$ paper(s) ( 2 ordinal, 3 approval)
E. Elkind $\quad-->5$ paper(s) (3 ordinal, 2 approval)
R. Meir $\quad->5$ paper(s) (3 ordinal, 3 approval)
R. Niedermeier $->5$ paper(s) ( 4 ordinal, 1 approval)
J. Rosenschein $\quad->5$ paper(s) (ordinal)
F. Rossi --> 5 paper(s) (ordinal)
H. Aziz --> 4 paper(s) (ordinal)
F. Brandt $\quad->4$ paper(s) (ordinal)
I. Caragiannis --> 4 paper(s) (ordinal)
S. Kraus $\quad-->4$ paper(s) (ordinal)
Y. Lewenberg $\quad->4$ paper(s) (ordinal)
S. Nath --> 4 paper(s) (ordinal)
K. Sornat --> 4 paper(s) (2 ordinal, 2 approval)
A. Wilczynski --> 4 paper(s) (ordinal)


## Basic Statistics

- Papers: 158
- 125 ordinal
- 35 approval)
- Puzzle?
- Experiments: 250
- 204 ordinal
- 46 approval
- Authors: 273 (+/-)

[^0]
## Basic Statistics

- Papers: 158
- 125 ordinal
- 35 approval)
- Puzzle?
- Experiments: 250
- 204 ordinal
- 46 approval
- Authors: 273 (+/-)

[^1]
## Basic Statistics

- Papers: 158
- 125 ordinal
- 35 approval)
- Puzzle?
- Experiments: 250
- 204 ordinal
- 46 approval
- Authors: 273 (+/-)
P. Faliszewski --> 26 paper(s) (18 ordinal, 8 approval)
P. Skowron --> 14 paper(s) (8 ordinal, 6 approval)
N. Talmon --> 14 paper(s) (11 ordinal, 3 approval)
M. Lackner --> 12 paper(s) (3 ordinal, 9 approval)
S. Szufa --> 11 paper(s) (8 ordinal, 3 approval)
A. Procaccia --> 8 paper(s) (ordinal)
A. Slinko --> 8 paper(s) (7 ordinal, 1 approval)
N. Boehmer --> 7 paper(s) (ordinal)
N. Mattei --> 7 paper(s) (5 ordinal, 2 approval)
N. Shah --> 7 paper(s) ( 6 ordinal, 1 approval)
L. Xia --> 7 paper(s) (ordinal)
C. Boutilier $\quad->6$ paper(s) (ordinal)
U. Endriss --> 6 paper(s) (4 ordinal, 2 approval)
J. Lang $\quad-->6$ paper(s) (3 ordinal, 3 approval)
O. Lev $\quad-->6$ paper(s) (ordinal)
D. Peters --> 6 paper(s) (4 ordinal, 2 approval)
T. Walsh $\quad-->6$ paper(s) (ordinal)
R. Bredereck --> 5 paper(s) (4 ordinal, 1 approval)
M. Brill $\quad->5$ paper(s) ( 2 ordinal, 3 approval)
E. Elkind $\quad-->5$ paper(s) ( 3 ordinal, 2 approval)
R. Meir $\quad-->5$ paper(s) ( 3 ordinal, 3 approval)
R. Niedermeier --> 5 paper(s) (4 ordinal, 1 approval)
J. Rosenschein $-->5$ paper(s) (ordinal)
F. Rossi --> 5 paper(s) (ordinal)
H. Aziz --> 4 paper(s) (ordinal)
F. Brandt $\quad->44$ paper(s) (ordinal)
I. Caragiannis --> 4 paper(s) (ordinal)
S. Kraus --> 4 paper(s) (ordinal)
Y. Lewenberg $\quad->4$ paper ( $s$ ) (ordinal)
S. Nath --> 4 paper(s) (ordinal)
K. Sornat --> 4 paper(s) (2 ordinal, 2 approval)
A. Wilczynski --> 4 paper(s) (ordinal)


## Experiments on Elections in COMSOC



Papers in recent Al conferences


Papers in recent Al conferences that include experiments on elections*

## Experiments on Elections in COMSOC




## So Experiments Happen

 Are They Any Good?
## What Elections to Study?

Structure of the preference orders?<br>Reasonable<br>numbers of<br>candidates and<br>voters?

## What Elections to Study?

Structure of the preference orders?

Reasonable numbers of candidates and voters?

Ground-truth search (sporting events, meta-search engines, recommendation systems, etc.)

Small committees (e.g., hiring), friends voting on frivolous stuff, „usual life"

nstitutions (IFAAMAS
Voters

Candidate Historgram, Synthetic Elections


Large-scale politics
Candidates

Voter Histogram, Synthetic Elections


## What Elections to Study?

Structure of the preference orders?

Reasonable numbers of candidates and voters?

Ground-truth search (sporting events, meta-search engines, recommendation systems, etc.)

Small committees (e.g., hiring), friends voting on frivolous stuff, „usual life"

nstitutions (IFAAMAS
board elections, choosing electors at universities, etc.)

Candidate Historgram, Synthetic Elections


Large-scale politics
Candidates

Voter Histogram, Synthetic Elections


Heatmap, Synthetic Elections

Ground-truth search (sporting events, metasearch engines, recommendation systems, etc.)

Small committees (e.g., hiring), friends voting on frivolous stuff, „usual life"



## What Elections to

Study?

Reasonable

Structure of the preference orders?

Histogram of statistical cultures (ordinal)


Histogram of statistical cultures (ordinal)

## What Elections to Study?

Reasonable numbers of candidates and voters?


Statistical cultures

Number of cultures used in a paper


Number of cultures used in a paper/Year


Statistical Cultures/Year (ordinal)


## Co-Occurence of Cultures

Matrix entries - How frequently two given cultures happen together
Diagonal - How frequently a given culture is used alone
















## Conclusions

- Experiments have become mainstream
- Not compulsory though (yet)
- Election sizes
- Often taken without particularly deep motivations
- Somehow fit a reasonable picture, though!
- Many papers use just one statistical culture
- But fewer than one might think!
- Using multiple data sources is becoming common
- Using real-life data (Preflib/Pabulib) much more common than one might suspect


# Do More Experiments! 

Please...


[^0]:    P. Faliszewski --> 26 paper(s) (18 ordinal, 8 approval)
    P. Skowron --> 14 paper(s) (8 ordinal, 6 approval)
    N. Talmon --> 14 paper(s) (11 ordinal, 3 approval)
    M. Lackner --> 12 paper(s) (3 ordinal, 9 approval)
    S. Szufa --> 11 paper(s) (8 ordinal, 3 approval)
    A. Procaccia --> 8 paper(s) (ordinal)
    A. Slinko --> 8 paper(s) (7 ordinal, 1 approval)
    N. Boehmer --> 7 paper(s) (ordinal)
    N. Mattei $\quad-->7$ paper(s) (5 ordinal, 2 approval)
    N. Shah --> 7 paper(s) ( 6 ordinal, 1 approval)
    L. Xia --> 7 paper(s) (ordinal)
    C. Boutilier $\quad->6$ paper(s) (ordinal)
    U. Endriss --> 6 paper(s) (4 ordinal, 2 approval)
    J. Lang $\quad-->6$ paper(s) (3 ordinal, 3 approval)
    O. Lev $\quad-->6$ paper(s) (ordinal)
    D. Peters --> 6 paper(s) (4 ordinal, 2 approval)
    T. Walsh $\quad-->6$ paper(s) (ordinal)
    R. Bredereck --> 5 paper(s) (4 ordinal, 1 approval)
    M. Brill $\quad-->5$ paper(s) (2 ordinal, 3 approval)
    E. Elkind $\quad-->5$ paper(s) (3 ordinal, 2 approval)
    R. Meir $\quad->5$ paper(s) (3 ordinal, 3 approval)
    R. Niedermeier $->5$ paper(s) ( 4 ordinal, 1 approval)
    J. Rosenschein $-->5$ paper(s) (ordinal)
    F. Rossi $\quad-->5$ paper(s) (ordinal)
    H. Aziz --> 4 paper(s) (ordinal)
    F. Brandt $\quad->4$ paper(s) (ordinal)
    I. Caragiannis --> 4 paper(s) (ordinal)
    S. Kraus --> 4 paper(s) (ordinal)
    Y. Lewenberg --> 4 paper(s) (ordinal)
    S. Nath $\quad$--> 4 paper(s) (ordinal)
    K. Sornat --> 4 paper(s) (2 ordinal, 2 approval)
    A. Wilczynski --> 4 paper(s) (ordinal)

[^1]:    P. Faliszewski --> 26 paper(s) (18 ordinal, 8 approval)
    P. Skowron --> 14 paper(s) (8 ordinal, 6 approval)
    N. Talmon --> 14 paper(s) (11 ordinal, 3 approval)
    M. Lackner --> 12 paper(s) (3 ordinal, 9 approval)
    S. Szufa --> 11 paper(s) (8 ordinal, 3 approval)
    A. Procaccia --> 8 paper(s) (ordinal)
    A. Slinko $\quad->8$ paper(s) ( 7 ordinal, 1 approval)
    N. Boehmer --> 7 paper(s) (ordinal)
    N. Mattei --> 7 paper(s) (5 ordinal, 2 approval)
    N. Shah --> 7 paper(s) ( 6 ordinal, 1 approval)
    L. Xia --> 7 paper(s) (ordinal)
    C. Boutilier $\quad->6$ paper(s) (ordinal)
    U. Endriss --> 6 paper(s) (4 ordinal, 2 approval)
    J. Lang $\quad-->6$ paper(s) (3 ordinal, 3 approval)
    O. Lev --> 6 paper(s) (ordinal)
    D. Peters --> 6 paper(s) (4 ordinal, 2 approval)
    T. Walsh $\quad-->6$ paper(s) (ordinal)
    R. Bredereck $\quad->5$ paper(s) (4 ordinal, 1 approval)
    M. Brill $\quad->5$ paper(s) (2 ordinal, 3 approval)
    E. Elkind $\quad-->5$ paper(s) ( 3 ordinal, 2 approval)
    R. Meir $\quad->5$ paper(s) (3 ordinal, 3 approval)
    R. Niedermeier $\rightarrow 5$ paper(s) (4 ordinal, 1 approval)
    J. Rosenschein $-->5$ paper(s) (ordinal)
    F. Rossi --> 5 paper(s) (ordinal)
    H. Aziz --> 4 paper(s) (ordinal)
    F. Brandt $\quad->4$ paper(s) (ordinal)
    I. Caragiannis --> 4 paper(s) (ordinal)
    S. Kraus --> 4 paper(s) (ordinal)
    Y. Lewenberg --> 4 paper(s) (ordinal)
    S. Nath --> 4 paper(s) (ordinal)
    K. Sornat --> 4 paper(s) (2 ordinal, 2 approval)
    A. Wilczynski --> 4 paper(s) (ordinal)

