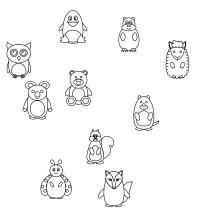
Stability in Random Coalition Formation

Games, Mechanisms and Social Networks seminar, Warsaw

Sonja Kraiczy

Joint work with Martin Bullinger

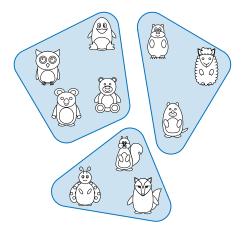
Coalition Formation



Drèze and Greenberg (ECMA 1980)

Sonja Kraiczy

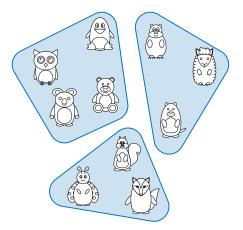
Coalition Formation



Drèze and Greenberg (ECMA 1980)

Sonja Kraiczy

Coalition Formation



How to obtain desirable coalition structures algorithmically?

Drèze and Greenberg (ECMA 1980)

Sonja Kraiczy

Random Coalition Formation

March 14th, 2024 1 / 22

Applications

Team allocation

Cooperative game theory

Clustering

Machine learning

Community detection

Social sciences

Hedonic Games: Formal Model

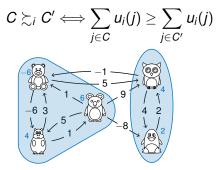
- Set *N* of *n* agents
- Agent $i \in N$ expresses preference order over coalitions
- Output: coalition structure (= partition) of agents
- **Representation issues:** 2^{n-1} possible coalitions

Drèze and Greenberg (ECMA 1980)

Sonja Kraiczy

Additively Separable Hedonic Games

- Preferences encoded by utility functions $u_i: N \to \mathbb{Q}$
- Induces hedonic game where

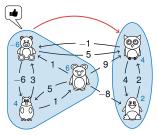


Bogomolnaia and Jackson (GEB, 2002)

Sonja Kraiczy

Single-Deviation Stability

Stable partition $\hat{=}$ no beneficial deviation by single agent



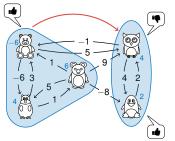
- Nash deviation: beneficial deviation to other coalition
- Nash-stable: there are no Nash deviations

Drèze and Greenberg (ECMA 1980), Dimitrov and Sung (JME 2007)

Sonja Kraiczy

Single-Deviation Stability

Stable partition $\hat{=}$ no beneficial deviation by single agent

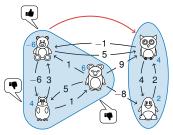


- Nash deviation: beneficial deviation to other coalition
- Nash-stable: there are no Nash deviations
- Individually stable: every Nash deviation blocked by agent in joined coalition

Drèze and Greenberg (ECMA 1980), Dimitrov and Sung (JME 2007)

Single-Deviation Stability

Stable partition $\hat{=}$ no beneficial deviation by single agent



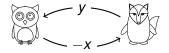
- Nash deviation: beneficial deviation to other coalition
- Nash-stable: there are no Nash deviations
- Individually stable: every Nash deviation blocked by agent in joined coalition
- Contractually Nash-stable: every Nash deviation blocked by agent in abandoned coalition

Drèze and Greenberg (ECMA 1980), Dimitrov and Sung (JME 2007)

Sonja Kraiczy

The Run and Chase Instance

- Consider a hedonic game where N = {Owl, Fox}
- Owl prefers to be alone over the grand coalition
- Fox prefers the grand coalition over being alone
- Nash-stability too demanding? Unreasonable?



Complexity of Stability

Theorem

It is NP-complete to decide if there exists a

- Nash-stable partition (Sung and Dimitrov, EJOR 2010),
- individually stable partition (Sung and Dimitrov, EJOR 2010),
- contractually Nash-stable partition (Bullinger, MFCS 2022)

Complexity of Stability

Theorem

It is NP-complete to decide if there exists a

- Nash-stable partition (Sung and Dimitrov, EJOR 2010),
- individually stable partition (Sung and Dimitrov, EJOR 2010),
- contractually Nash-stable partition (Bullinger, MFCS 2022)
- Hardness for Nash-stability even if utilities restricted to $\{-x, y\}$ for $x \ge y \ge 0$ (Brandt et al., AAAI 2022)
- Reduced instances seem to be artificial corner cases

Existence of Stable Outcomes

- Nash-stable partitions exist for symmetric utilities (Bogomolnaia and Jackson, GEB 2002)
 - PLS-complete to compute (Gairing and Savani, MOR 2019)

Existence of Stable Outcomes

- Nash-stable partitions exist for symmetric utilities (Bogomolnaia and Jackson, GEB 2002)
 - PLS-complete to compute (Gairing and Savani, MOR 2019)
- Individually stable and contractually Nash-stable partitions exist for {-x, y}-utilities (Brandt et al., AAAI 2022)
 - Natural dynamics runs in polynomial time

Stability in Random Games

Question: Do stable coalition structures *typically* exist for many agents?

- Random hedonic game $H(n, \mathcal{D})$
 - Set of n agents
 - Pairwise utility sampled i.i.d. from a distribution \mathcal{D}
- Investigate probability of property \mathfrak{P} (e.g., stability) when *n* tends to infinity:

$$\lim_{n\to\infty} \mathbb{P}(\mathcal{H}(n,\mathcal{D}) \text{ satisfies } \mathfrak{P}) = ?$$

First Observations

Grand coalition (all agents in one large coalition)

- Nash-stable if \mathcal{D} has positive mean, e.g., $\mathcal{D} = U(-1, 2)$,
- contractually Nash-stable if positive weight on positive utility,
- not individually stable if \mathcal{D} has mean 0, e.g., $\mathcal{D} = U(-1, 1)$

Theorem (Bullinger and Kraiczy, 2024)

Let $\mathcal{D} = U(-1, 1)$. Then, $\lim_{n\to\infty} \mathbb{P}(H(n, \mathcal{D}) \text{ admits Nash-stable partition}) = 0$. Moreover, there exists an efficient algorithm \mathcal{A} such that $\lim_{n\to\infty} \mathbb{P}(\mathcal{A}(H(n, \mathcal{D})) \text{ individually stable}) = 1$, and $\lim_{n\to\infty} \mathbb{P}(\mathcal{A}(H(n, \mathcal{D})) \text{ contractually Nash-stable}) = 1$.

 $H(n, \mathcal{D})$: random hedonic game

Sonja Kraiczy

Exit Denial and Entry Denial

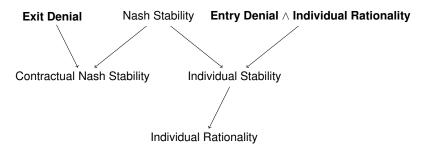
- Consent prevents deviations from / to large coalitions
 - Every agent denied to leave / join
- Individual stability requires individual rationality (nonnegative utilities)

Exit Denial and Entry Denial

- Consent prevents deviations from / to large coalitions
 - Every agent denied to leave / join
- Individual stability requires individual rationality (nonnegative utilities)
- Exit / entry denial: every agent denied to leave (resp. join) their (resp. any other) coalition

Exit Denial and Entry Denial

- Consent prevents deviations from / to large coalitions
 - Every agent denied to leave / join
- Individual stability requires individual rationality (nonnegative utilities)
- Exit / entry denial: every agent denied to leave (resp. join) their (resp. any other) coalition

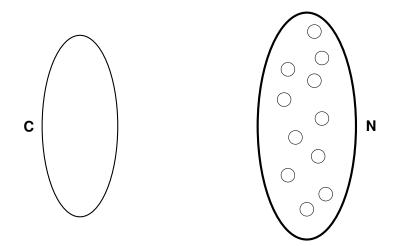


Goal of Algorithm

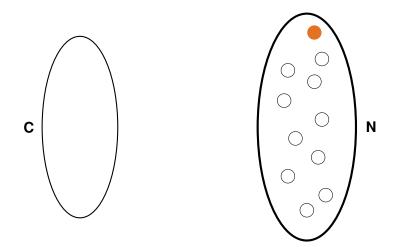
Construct partition that satisfies

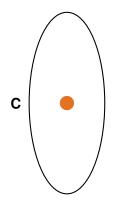
- Individual Rationality
- Entry-Denial
- Exit-Denial

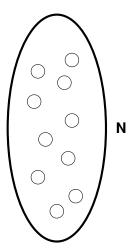
Form coalitions with high mutual utility

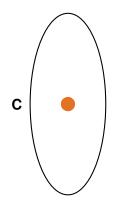


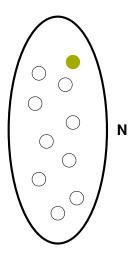
Sonja Kraiczy

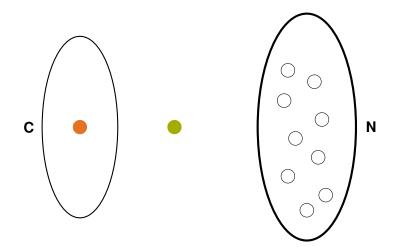


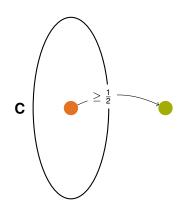


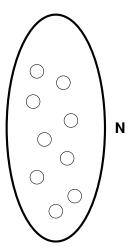


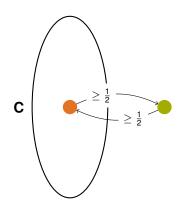


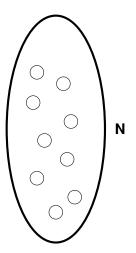


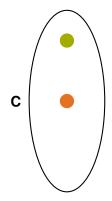


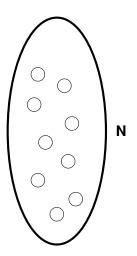


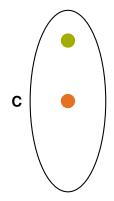


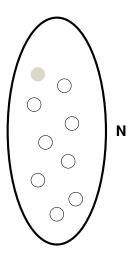


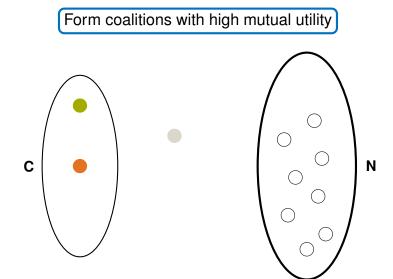


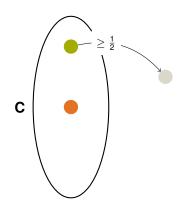


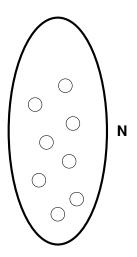


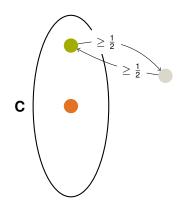


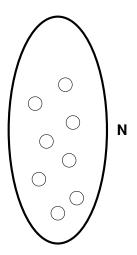


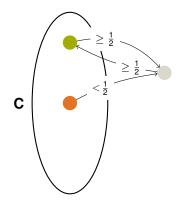


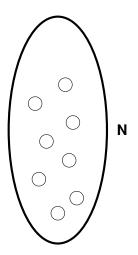


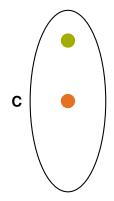


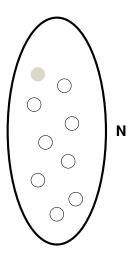


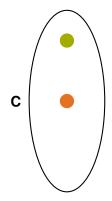


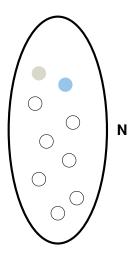


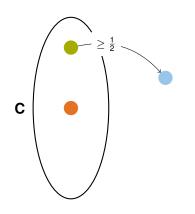


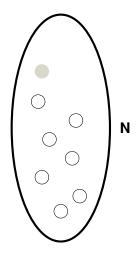


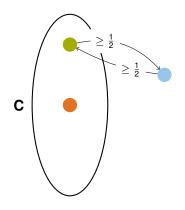


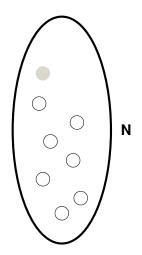


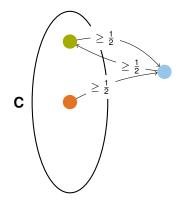


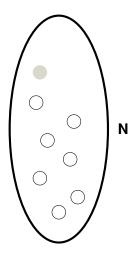


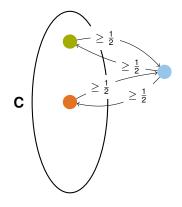


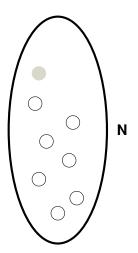


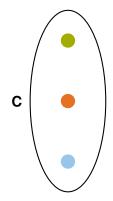


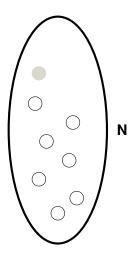












Performance of Stage 1

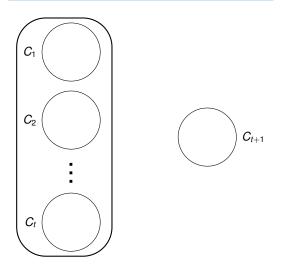
Theorem

With high probability, all except at most $\frac{n}{\log_{16}^2 n}$ agents are assigned to coalitions of size $\left\lceil \frac{\log_{16} n}{2} \right\rceil$.

- Good for individual rationality
- (Nonsingleton) coalitions fail entry denial
- Idea: enlarge coalitions while losing little utility

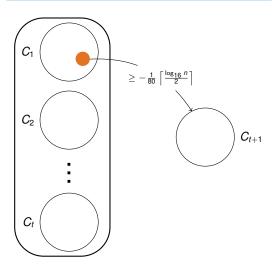
Stage 2: Greedy Clustering

Merge coalitions with small utility loss



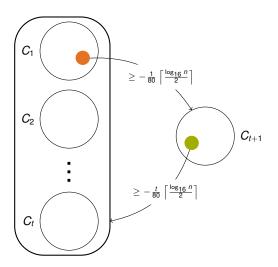
Stage 2: Greedy Clustering

Merge coalitions with small utility loss



Stage 2: Greedy Clustering

Merge coalitions with small utility loss



Performance of Stage 2

Theorem

With high probability, all except at most $20\frac{n}{\log_{16}^2 n} + \alpha \left\lceil \frac{\log_{16} n}{2} \right\rceil$ agents are assigned to coalitions of size $20 \left\lceil \frac{\log_{16} n}{2} \right\rceil$.

- Split agents set into 20 subsets
- Run Stage 1 for each individually
- Merge 20 coalitions each
- Only a finite number of Stage 1 coalitions not merged

Stage 3: Assigning Remainder Agents

Theorem

With high probability, the remainder agents can be added to coalitions for which

- they receive positive utility,
- no utility values revealed in Stage 2.
- First property: individual rationality
- Second property: exit denial

Main Theorem 1

Theorem (Bullinger and Kraiczy, 2024)

Let $\mathcal{D} = U(-1, 1)$. Then, there exists an efficient algorithm \mathcal{A} such that

■ $\lim_{n\to\infty} \mathbb{P}(\mathcal{A}(H(n, D)) \text{ individually stable}) = 1, \text{ and }$

■ $\lim_{n\to\infty} \mathbb{P}(\mathcal{A}(H(n, D)) \text{ contractually Nash-stable}) = 1.$

- Individual rationality: Stages 1 and 3
- Entry denial: Stage 2
- Exit denial: Stages 2 and 3

 $H(n, \mathcal{D})$: random hedonic game

Main Theorem 2

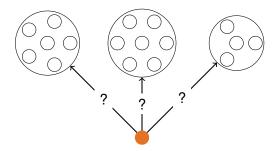
Theorem (Bullinger and Kraiczy, 2024)

Let $\mathcal{D} = U(-1, 1)$. Then,

 $\lim_{n\to\infty} \mathbb{P}(H(n,\mathcal{D}) \text{ admits Nash-stable partition}) = 0.$

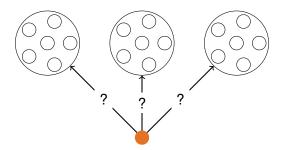
- Sophisticated counting argument
- Bound probability of Nash stability given a fixed number of coalitions
- Multiply with Stirling number of second kind

 $H(n, \mathcal{D})$: random hedonic game



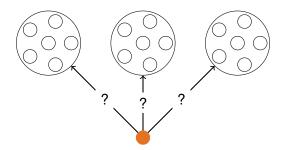
Nash stability captured by comparing sums of i.i.d. random variables

Proof Idea



- Nash stability captured by comparing sums of i.i.d. random variables
- Probability bounded by case of identical-size coalitions

Proof Idea



- Nash stability captured by comparing sums of i.i.d. random variables
- Probability bounded by case of identical-size coalitions
- Challenge: agents are themselves part of a coalition

Conclusion

- Random model of coalition formation
- High probability analysis in large agent limit
- Nash stability fails to exist
- Individual stability and contractual Nash stability derived by efficient algorithm

Conclusion

- Random model of coalition formation
- High probability analysis in large agent limit
- Nash stability fails to exist
- Individual stability and contractual Nash stability derived by efficient algorithm

Future directions

- Other probability distributions
- Other (stability) concepts
- Other game classes