Selecting the Most Conflicting Pair of Candidates

Théo Delemazure*

Łukasz Janeczkoº

${ }^{\circ}$ AGH University, Kraków, Poland
*CNRS, LAMSADE, Université Paris Dauphine-PSL, France
Stanisław Szufa*

setting the stage

$$
\begin{aligned}
& \text { 田〉0>畟〉良〉为 }
\end{aligned}
$$

for what?

Learning from preferences

engagement

creativity

deliberation

selecting: state of the art

Most

conflicting candidates

Current tools

 insufficient!preference insights: state of the art
＊

Single－candidate measures

Full－election measures

$$
\begin{aligned}
& \text { カ〉 }
\end{aligned}
$$

Current tools

 insufficient！
must-have properties

Unanimity

Conflict consistency and unanimity are contradicting each other!

nice-to-have properties

$V^{a>b}$ voters preferring a to b
$v(a b)$ "directed" positions difference between a and b

Matching-domination of pairs (informally)

Pair $\{A, B\}$ dominates pair $\{C, D\}$ if voters can be matched such that for each matched pair the conflict between A and B is at least that between C and D; with these inequality being strong for at least one pair. Each matched pair of voters has the same preference towards $\{A, B\}$ and $\{C, D\}$.

	$\begin{aligned} & A>B \\ & v(A B) \end{aligned}$	$\underset{v(C D)}{C>D}$	$A>B$	C>D	
$A>B>C>D$	1	1		≥ 2	
$A>C>D>B$	3	1		≥ 1	
$A>C>B>D$	2	2		≥ 1	
$D>C>A>B$	1	-1		≥ 1	$A>B$ is dominating $D>C$
	$\begin{aligned} & B>A \\ & v(B A) \end{aligned}$	$\begin{aligned} & \mathrm{D}>\mathrm{C} \\ & v(D C) \end{aligned}$	$B>A$	D $>C$	
$B>D>A>C$	2	2	3	≥ 2	
$B>C>D>A$	3	-1		≥ 1	

Matching domination
Matching-dominated pairs are never selected!
nobody's perfect

Theorem: Conflict consistency, matching domination, and conflict monotonicity are incompatible.

Proof:
$a>b>c>d$
$b>a>d>c$
Only (a,b) or (c,d) can win

Conflict Consistency

Assume (a, b) is wins
$a>b>c>d$
$b>d>c>a$
(a,b) should still win
$a>b: \quad(1,-3)$
$a>d: \quad(-3,2)$
(a,d) dominates (a,b),
Conflict Monotonicity
thus (a,b) cannot win

getting the most conflicting pair

Conflict between two voters $\operatorname{conf}_{v, v^{\prime}}^{\circ}(a, b)= \begin{cases}0 & \text { if } v(a b) \cdot v^{\prime}(a b)>0 \\ |v(a b)| \circ\left|v^{\prime}(b a)\right| & \text { otherwise }\end{cases}$ $+$
de

Max Sum Conflict

$\operatorname{MaxSum}(P)=\underset{a, b \in C}{\operatorname{argmax}} \sum_{v, v^{\prime} \in V} \operatorname{conf}^{\dagger}(a, b)$

Max Nash Conflict

$\operatorname{MaxNash}(P)=\underset{a, b \in C}{\operatorname{argmax}} \sum_{v, v^{\prime} \in V} \operatorname{conf}^{\mathrm{x}}(a, b)$

$$
\begin{aligned}
& \operatorname{conf}^{+}(\mathbf{2}, 0)=0 \\
& \operatorname{conf}^{\times} \text {(田触) }=4 \cdot 4=16
\end{aligned}
$$

$$
\operatorname{nonconf}(a, b)=\min \left(\sum_{v \in V^{a>b}} v(a b), \sum_{v \in V^{b>a}} v(b a)\right)
$$

$$
\begin{aligned}
& \operatorname{nonconf}(\text { 田, })=\min (4,4)=4 \\
& \operatorname{nonconf}(\%, 0)=\min (2,0)=0 \\
& \operatorname{nonconf}(O, \boxplus)=\min (1,3)=1
\end{aligned}
$$

Max Swap

$\operatorname{MaxSwap}(P)=\operatorname{argmax} \operatorname{nonconf}(a, b)$

$$
a, b \in C
$$

Understanding
 the ???

Understanding
 the conflictual
 voting rules
 (axiomatically)

Axiomatic properties of conflictual rules.

Understanding the conflictual voting rules

(quantitatively)

Who is the most conflicting, $\{A, B\}$ or $\{X, Y\}$?

Y	$A>X>\ldots>Y>\ldots>B$
$B>X>\ldots>Y>A$	$B>X>\ldots \ggg \ggg 1$
$>Y>\ldots>X>A$	$B>Y>\ldots$
$B>Y>\ldots>X>A$	> Y > ... > X > ...

Discrepancy

$$
\beta(a, b)=\frac{1}{n(m-1)} \sum_{v \in V} v(a b)
$$

Max Sum $\operatorname{conf}^{+}(a, b)=C_{2} \alpha(2-\alpha) \beta$
Max Nash $\operatorname{conf}^{\times}(a, b)=C_{1} \alpha(2-\alpha) \beta^{2}$ Max Swap nonconf $(a, b)=C_{3} \alpha \beta$

Reverse Stability	\checkmark	\checkmark	\checkmark	\checkmark
Conflict Consistency	\checkmark	\checkmark	\checkmark	\checkmark
Conflict Monotonicity	x	x	x	x
Antagonization Consistency	\checkmark	\checkmark	\checkmark	\checkmark
Matching Domination	\checkmark	\checkmark	\checkmark	x

Axiomatic properties of conflictual rules.

Understanding the conflictual voting rules

(experimentally)

Politics

X axis: partitioning ratio α

the higher the more balanced division of voters

Y axis: discrepancy β

the higher the more conflict each pair generates

Sushi

Skate

	2017			2022	
MaxSwap	Far-left	¢	Far-right	Far-left	$\boldsymbol{j} \rightarrow \boldsymbol{j}$ Far-right
MaxNash	Socialist	¢	Far-right	Left	j \sim Far-right
MaxSum	Socialist	¢	Far-right	Far-left	$j \rightarrow j$ Far-right
2-MaxPolar	Far-left	i -1	Far-right	Far-left	$\boldsymbol{j} \rightarrow \boldsymbol{j}$ Far-right
Borda	Left	$i \rightarrow$	Liberal	Left	$\boldsymbol{j} \boldsymbol{j} \boldsymbol{j}$ Green
CC	Left		Conservative	Green	$\boldsymbol{j} \rightarrow \boldsymbol{j}$ Far-right

Figure Skating

Political

Sushis

recap

Axioms

Selection Rules

Theoretical Validation

Experimental Validation

More than two candidates?

Approval setting?

*Relation to full-election measures?

*Categorizing elections?

Thank you!

