Selecting the Most Conflicting Pair of Candidates

Théo Delemazure*

Łukasz Janeczko°

Andrzej Kaczmarczyk°

Stanisław Szufa*

°AGH University, Kraków, Poland

*CNRS, LAMSADE, Université Paris Dauphine-PSL, France

setting the stage

for what?

engagement

creativity

deliberation

Learning from preferences

polarization

explainability

controversies

selecting: state of the art

Most

preference insights: state of the art

must-have properties

Conflict consistency

Unanimity

Must win due to conflict consistency

Conflict consistency and unanimity are contradicting each other!

nice-to-have properties

Conflict monotonicity

Increasing conflict for a selected pair does not make it lose

 $V^{a > b}$ voters preferring a to b

"directed" positions difference between a and b v(ab)

Matching-domination of pairs (informally)			Pair {A,B} dominates pair {C,D} if voters can be matched such that for each matched pair the conflict between A and B is at least that between C and D; with these inequality being strong for at least one pair. Each matched pair of voters has the same preference towards {A,B} and {C,D}.				
A>B>C>D A>C>D>B A>C>B>D D>C>A>B	A>B v(AB) 1 3 2 1	C>D v(CD) 1 1 2 -1	A>B 3 ≧ 2 ≧ 1 ≧ 1 ≧	C>D ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1	A>B is dominating D>C		
B>D>A>C B>C>D>A	B>A v(BA) 2 3	D>C v(DC) 2 -1	B>A 3 ≧ 2 ≧	D>C ≥ 2 ≥ 1			

Matching domination

Matching-dominated pairs are never selected!

nobody's perfect

getting the most conflicting pair

Max Sum Conflict

$$MaxSum(P) = \underset{a,b\in C}{\operatorname{argmax}} \sum_{v,v'\in V} \operatorname{conf}^+(a,b)$$

Max Nash Conflict
MaxNash
$$(P) = \underset{a,b \in C}{\operatorname{argmax}} \sum_{v,v' \in V} \operatorname{conf}^{*}(a,b)$$

Max Swap Selects a pair, which requires the greatest number of swaps to make it non-conflicting. (intuitively) nonconf(a,b)=min($\sum_{v \in V^{a > b}} v(ab), \sum_{v \in V^{b > a}} v(ba)$) nonconf $(\blacksquare, \bigstar) = \min(4, 4) = 4$ **爸≻ 🛞 ≻ 👘 ≻ () ≻** [] nonconf $(2,0) = \min(2,0) = 0$ $\blacksquare \succ \widehat{\textcircled{}} \succ \widehat{\textcircled{}} \succ \widehat{\textcircled{}} \succ \widehat{\textcircled{}} \succ \widehat{\textcircled{}}$ nonconf $(\textcircled{0}, \textcircled{1}) = \min(1, 3) = 1$ Max Swap MaxSwap(P) = argmax nonconf(a, b) $a, b \in C$

Understanding the ???

Understanding the conflictual voting rules (axiomatically)

	MaxSum	MaxNash	MaxSwap
Reverse Stability Conflict Consistency	1	1	1
Conflict Monotonicity Antagonization Consistency Matching Domination	×	× ✓ ✓	× × ×

Axiomatic properties of conflictual rules.

Understanding the conflictual voting rules (quantitatively)

	MaxSum	MaxNash	MaxPolar	MaxSwap
Reverse Stability Conflict Consistency	1	1	11	1
Conflict Monotonicity Antagonization Consistency Matching Domination	×	× ✓ ✓	× ✓ ✓	× × ×

Axiomatic properties of conflictual rules.

Understanding the conflictual voting rules (experimentally)

X axis: partitioning ratio α

the higher the more balanced division of voters

Y axis: discrepancy β

the higher the more conflict each pair generates

	2017			2022		
MaxSwap	Far-left	ś→ż	Far-right	Far-left	ś→ż	Far-right
MaxNash	Socialist	ŕ→i	Far-right	Left	ś→ż	Far-right
MaxSum	Socialist	ķ→į	Far-right	Far-left	ś→ż	Far-right
2-MaxPolar	Far-left	ŝ⇒ż	Far-right	Far-left	ŕ→į	Far-right
Borda	Left	ś→ż	Liberal	Left	ś→ż	Green
CC	Left	ŕ→i	Conservative	Green	ŕ→į	Far-right

Selection Rules

Theoretical Validation

Experimental Validation

Thank you!