Comparative Analysis of Convolutional and Transformer Architectures in Go Policy Networks

Antoni Hanke

Recap: Convolutional Neural Networks

Computer way to extract features

 Kernel multiplication allows to find basic features

• Applying next layers allows to combine features into meaningful properties

Sources: https://towardsdatascience.com/types-of-convolution-kernels-simplified-f040cb307c37

Low-Level High-Level Feature High-Level Classifier

Recap: Transformer networks

Riddle:

\$

The table is red. The chair is blue. What color is the table?

The color of the table is red, as mentioned in the statement "The table is red."

Yes, but how did he know?

Recap: Transformers

Attention is all you need

• Key, Query, Value attention allow to learn which words refer to which

Input

Embedding

Queries

Keys

Values

Score

• Multiple attention layers allow for accurate reasoning even with complicated context

Sources: https://lih-verma.medium.com/query-key-and-value-in-attention-mechanism-3c3c6a2d4085, https://colab.research.google.com/drive/1PEHWRHrvxQvYr9NFRC-E_fr3xDq1htCj? ref=morioh.com&utm_source=morioh.com#scrollTo=fZAXH7hWyt58,

	Layer. II 🗸	_	
[CLS]	[CLS]	[CLS]	
the	the	the	
table	table	table	
is	is	is	
red	red	red	
and	and	and	
the	the	the	
chair	chair	chair	
is	is	is	
blue	blue	blue	
[SEP]	[SEP]	[SEP]	
what	what	what	
color	color	color	
is	is	is	
the	the	the	
table	table	table	
[SEP]	[SEP]	[SEP]	

Few problems and choice of architectures

- Determine whether a dog is in the picture?
- Determine whether there are 3 red pixels on different corners of picture?
- Determine which human is pointing his finger?
- Determine which human is having a finger pointed at him?

Last recap: Go rules

- Players take turns to place a stone on the crossings board
- Once a group of stones is completely surrounded, it is captured and taken off the board

• After both players pass, the overall surrounded territory is evaluated. Winner is the player with more territory

Comparative Analysis of Convolutional and Transformer Architectures in Go Policy Networks

Antoni Hanke

Why study how policies think?

"Know thy self, know thy enemy. A thousand battles, a thousand victories!" Sun Tzu

Decision quality of professional Go players before and after AlphaGo

Machine Culture, Brinkman et.al - 2023 https://arxiv.org/abs/2311.11388

Why study how policies think?

We can learn from them...

Policy networks analyzed

Both networks achieved human master strength (~3d)

8 encoder blocks 8 decoder blocks 8 heads FFdim = 2048 d model = 512

BART

Oracle helps us evaluate both policy networks

Oracle - a superhuman strength policy (KataGo) ~9d+ strength, winning 100% games against our policies

Our networks

Board dispersity - a measure of position focus

 $dispersity(b) = \sum dist(m_{best}, m) \cdot p_{oracle}(m)$

$m \in moves$ Low dispersity

Single globally important position

High dispersity

Multiple independent equivalent regions

Policy performance

Spearman Correlation: -0.162, p-value: 4e-05

Transformer is better on low dispersity boards (single globally important position)

Spearman Correlation: -0.162, p-value: 4e-05

Ceteris Paribus probability difference disparity

Transformer

Oracle

Last layer Ceteris Paribus logit differences Convolution

Last layer Ceteris Paribus logit differences Transformer

Conclusions

- Transformer's global attention helps with understanding a single universal situation
- Transformer's calculations are very pin-point and precise; Convolution's are more gradient
- Convolution is slower at transmitting information over large distances upon localized change
- Applications where precise understanding the global context is important might benefit from utilizing **Transformers** instead of Convolutions

Further planned work

- Linear probings: We attach a simple linear classifier at various points of the network and train it to recognize whether certain features are on the board
- Concept-conditional explanations to find non-human concepts recognized by the 2 networks

Fig. 2. What–when–where plots for a selection of Stockfish 8 and custom concepts. Following Fig. 1, we count a ResNet "block" as a layer. (*A*) Stockfish 8's evaluation of total score. (*B*) Is the playing side in check? (*C*) Stockfish 8's evaluation of threats. (*D*) Can the playing side capture the opponent's queen? (*E*) Could the opposing side checkmate the playing side in one move? (*F*) Stockfish 8's evaluation of "material score." (*G*) Stockfish 8's material score. Past 10⁵ training steps this becomes less predictable from AlphaZero's later layers. (*H*) Does the playing side have a pawn that is pinned to the king?

