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Recap: Convolutional Neural Networks

Computer way to extract features

Kernel Image
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« Applying next layers allows to combine
features into meaningful properties
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Recap: Transformer networks

Riddle:

The table is red. The chair is blue. What color is the table?

@ The color of the table 1s red, as mentioned in the statement "The table 15 red.”

Yes, but how did he know?

Sources: chat.openai.com



Recap: Transformers

Attention is all you need

« Key, Query, Value attention allow to learn
which words refer to which

« Multiple attention layers allow for accurate
reasoning even with complicated context

Sources:
ref=morioh.com&utm_source=morioh.com#scrollITo=fZAXH7hWyt58,
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https://lih-verma.medium.com/query-key-and-value-in-attention-mechanism-3c3c6a2d4085

Few problems and choice of architectures

e Determine whether a dog is in the picture?
e Determine whether there are 3 red pixels on different corners of picture?
e Determine which human is pointing his finger?

e Determine which human is having a finger pointed at him?




Last recap: Go rules

- Players take turns to place a stone on the crossings board

« Once a group of stones is completely surrounded, it is

captured and taken off the board

« After both players pass, the overall surrounded territory is

evaluated. Winner is the player with more territory

Sources: wikipedia.org, wolframalpha.com
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~ Why study how policies
think?

“Know thy self, know thy
enemy. A thousand battles,
a thousand victories!”
Sun Tzu




Decision quality

Why study how policies
think?
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Decision quality of professional Go players
before and after AlphaGo

Machine Culture, Brinkman et.al - 2023
https://arxiv.org/abs/2311.11388



Policy networks analyzed

Move probabilities o
v BART
I i : 8 encoder blocks
Convolution
@ : : B 8 decoder blocks
: 40 residual connection blocks |
256 channels B 8 heads
1 FFdim =2048
d_model = 512
Position
~60M Parameters ~60M Parameters
Behavioral cloning on 500K human master games (4d+) Behavioral cloning on 500K human master games (4d+)
48h training on 8xA100 48h training on 8xA100

Both networks achieved human master strength (~3d)



Oracle helps us evaluate both policy networks

Oracle - a superhuman strength policy (KataGo)
~9d+ strength, winning 100% games against our policies

Our networks




Board dispersity - a measure of position focus

dispersity(b) = Y dist(mpest, ™) - Poracte(m)
MEMOVES

Low dispersity High dispersity

Single globally important position Multiple independent equivalent regions
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Policy performance

per formacne, =

P (mbest)

mazx [p(m)]

mMmemoves

p — policy, mpess — best oracle move, p(m) — probability of policy selecting move m

Transformer outperforms vs localization measure (I1)
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Spearman Correlation: -0.162, p-value: 4e-05

Transformer better

Transformer outperforms vs localization measure (12)
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Transformer is better on low dispersity boards (single globally important
position)



Ceteris Paribus probability difference disparity
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Convolution Transformer Oracle

7.23 (N 8.72

Wilcoxon singed pair test
P-value: 0.039

Changing a position influences
Transformer’s decisions further

Convolution Transformer Oracle



Last layer Ceteris Paribus logit differences

Convolution




Last layer Ceteris Paribus logit differences

Transformer




Conclusions

e Transformer’s global attention helps with understanding a

single universal situation

e Transformer’s calculations are very pin-point and precise;
Convolution’s are more gradient

e Convolution is slower at transmitting information over large
distances upon localized change

e Applications where precise understanding the global
context is important might benefit from utilizing
Transformers instead of Convolutions



Further planned work
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Fig. 2. What-when-where plots for a selection of Stockfish 8 and custom concepts. Following Fig. 1, we count a ResNet "block” as a layer. (A) Stockfish 85
evaluation of total score. (8) 1s the playing side in check? (C) Stockfish 8% evaluation of threats. (D) Can the playing side capture the opponent’s queen? (F) Could
the opposing side checkmate the playing side in one move? (F) Stockfish 85 evaluation of *material score.” (G) Stockfish 85 material score. Past 107 training steps

this becomes less predictable from AlphaZero's later layers. (H) Does the playing side have a pawn that is pinned to the king?
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