NP-hard metrics for evaluating PB election rules

Grzegorz Nowakowski

Preliminaries

- E = (P, N, b, cost) election
- $P = \{p_1, \ldots, p_m\}$ projects
- $N = \{1, 2, ..., n\} \text{voters}$
- $b \in \mathbb{N}$ budget
- $cost: P \to \mathbb{N}$
- $s_i(p) \in \mathbb{N} \text{score}$

Score utilities

$$u_i^{sc}(W) = \sum_{p \in W} s_i(p)$$

Cost utilities

$$u_i^{cost}(W) = \sum_{p \in W} s_i(p) cost(p)$$

Voting rules

voting rule – function $E \to P(P)$ $W \in P(P)$ – outcome, s.t. $cost(W) \le b$

Outcome W is **exhaustive** if for each project $c \in C \setminus W$ we have that cost(W) + cost(c) > b

A voting rule is **exhaustive** if it always returns an exhaustive outcome.

Two popular voting rules are:

- Utilitarian Greedy,
- Method of Equal Shares.

Utilitarian Greedy

- 1. We start with an empty outcome $W = \emptyset$.
- 2. Repeatedly select a project pmaximising the ratio $\sum_{i \in N} \frac{u_i(p)}{cost(p)}$.
- 3. If $cost(W) + cost(p) \le b$ then add project p to W; otherwise remove the project from consideration.

This rule aims at maximizing the total utility of voters.

It is **optimal up to one project** – for each outcome W returned by UG there exists $p \notin W$ s.t.:

$$\sum_{i \in N} u_i(W \cup \{p\}) \ge \max_{W': cost(W') \le b} \sum_{i \in N} u_i(W').$$

Basic Metrics for Fairness and Efficiency

Average utility:

 $\frac{1}{n}\sum_{i\in\mathbb{N}}u_i(W)$

Dominance margin of R_1 over R_2 :

the fraction of voters who enjoy strictly higher utility from the outcome of R_1 than from R_2 .

Similar ones: **improvement margin** and **exclusion ratio**.

Let's say, for a given outcome W, voter i's share is: $share_i(W) = \sum \frac{s_i(p)}{cost(p)} \cdot cost(p)$

$$share_i(W) = \sum_{p \in W} \frac{s_i(p)}{\sum_{j \in N} s_j(p)} \cdot cost(p)$$

Power inequality:

$$\frac{1}{n} \cdot \sum_{i \in N} \left| share_i(W) - \frac{b}{n} \right| \cdot \frac{n}{b}$$

Basic Metrics for Fairness and Efficiency

Let $\mathcal{D} = \{D_1, \dots, D_t\}$ be the set of districts (a partition of N). The **dispersion of the budget** allocation:

$$\frac{1}{|\mathcal{D}|} \cdot \sum_{D \in \mathcal{D}} \frac{|\sum_{i \in D} share_i(W) - |D|/n \cdot b|}{|D|/n \cdot b}$$

City	Add1U, C	Util. G, D	Util. G, C
Czestochowa	0.23	0.28	0.39
Gdansk	0.27	0.33	0.46
Katowice	0.19	0.26	0.51
Krakow	0.08	0.24	0.23
Warsaw	0.20	0.41	0.41
Wroclaw	0.15	0.26	0.22
Zabrze	0.38	1.24	0.41

Let W_{sc} and W_{appr} be the outcomes of a given voting rule for the original and the approval elections, respectively. The **robustness ratio**:

$$\frac{cost(W_{appr} \cap W_{sc})}{cost(W_{sc})}$$

City	Add1U, C	Util. G, D	Util. G, C
Czestochowa	0.80	0.35	0.39
Gdansk	0.87	0.26	0.39
Katowice	0.83	0.56	0.42
Krakow	0.78	0.52	0.41

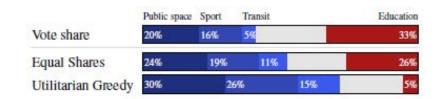
Budget distribution among Categories

For each project p, denote by tags(p) the tags assigned to p. For each tag t, we can compute ${\bf vote}$ share:

$$\frac{1}{n} \sum_{i \in N} \sum_{p \in A_i: t \in tags(p)} \frac{1}{|A_i| \cdot |tags(p)|}$$

and also for an outcome W we define **spending share**:

With these two, we can compute l_2 distance between the vectors of vote shares and the spending shares of all the tags.



The Core

- For an election (N, C, b, cost) we define extended justified representation:
- $\forall_E \forall_{l \in \mathbb{N}} \forall_{S \subseteq N:S \text{ is } l\text{-cohesive}} \exists_{i \in S} |A(i) \cap R(E)| \ge l$

Committee W is in the **core** if

 $\forall_{S \subseteq N} \forall_{T \subseteq C} \left(\frac{|S|}{|N|} \ge \frac{cost(T)}{b} \Rightarrow \exists_{i \in S} u_i(W) \ge u_i(T) \right)$

Is the core always non-empty?

What we know:

- Core can be empty in elections with ranking-based preferences and in PB with additive utilities
- $Core \Longrightarrow EJR$

Pabutools and Master's Thesis

- Pabutools Python library with implementation of some rules for PB
- Implement metrics for evaluating elections using linear programming
- Research whether the core can be computed fast in some cases (maybe with additional assumptions / constraints)
- Possibly research other metrics such Fractional Core, Pareto-Optimality, etc.

Thanks for your attention